If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-45=-5
We move all terms to the left:
x^2+2x-45-(-5)=0
We add all the numbers together, and all the variables
x^2+2x-40=0
a = 1; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*1}=\frac{-2-2\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*1}=\frac{-2+2\sqrt{41}}{2} $
| 6x−18=8x−32 | | -3x-10x+140=-12 | | -3x-2(5x-70)=-12 | | 6(x−3)=8(x−4) | | d+3.8+5=10 | | -0.05z=0.07 | | x+4=13–x | | 3.6•(0.5x-10)=7.2 | | 5n-10=7n+14 | | 1/3(x-3)-3=1/4(3x+2) | | 4=y+1÷4 | | 4=y+1/2 | | 3/8-5x=7/x+2 | | 4t^-2t-1=0 | | 25x2-30x+9=0 | | 7x/6-7=x/2+6 | | 2x(x-15)=-12 | | 10x+11x+6=0 | | -4(y-5)/5=2.4 | | x+1÷3-x-6÷2=x÷2 | | 4x^2+16x-125=0 | | x+8=x-11 | | 4(x+2)-10=3(2x-1) | | 5(t+1)/2=8 | | 5(t+10)/2=8 | | 2(s-6)/7=4 | | 1/2y-31/30=2/5y-1 | | 6+1-2x+5x=x-1 | | -(6/7)x+6=0 | | -(6/7x)+6=0 | | 3x+14=2(x+14) | | 2f+3=2-3(f=3) |